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[Picard 97]
 To build machines understand human emotions, Rt
« To make machines behave emotionally, and
* To develop machines having emotions.

What is Affective Computing?

An interdisciplinary field for incorporating emotion
state recognition, understanding, simulation, and
stimulation into computer system design.

Flagship conference: ACII, Affective
Computing and Intelligent Interaction
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Potential applications of affect sensing

Subjective experiences matter in many domains

All were drawn by DALL-E 3
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Felt affect versus perceived affect

Felt affect Perceived affect

@ Neutral
p

()

TARGET
PERCEIVER

All were drawn by DALL-E 3 4



Basic steps of supervised learning O nrr
for subjective emotion prediction

» »
Feature extraction
No preprocessing / Accuracy, F1, AUC
Standardization MAE, RMSE
Likelihood
maximization /

Loss minimization
Feature extraction

\_ J
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Issue 1: Ethical, Legal, and Social Issues (ELSI)

» »
Feature extraction
No preprocessing / Accuracy, F1, AUC
Standardization MAE, RMSE
Likelihood
maximization /

Loss minimization
Feature extraction

\_

Transparent &

_/
explainable
%Eb models are

needed
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Output
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Issue 2: Uncertainty in subjective judgment

Evaluation

Accuracy, F1, AUC
MAE, RMSE, ...
Same person may answer Unknown upper-bound
differently next time performance ®
o Room for improvement
Happy “ Neutral é ”5\
fg o How
. time . time |

Proposed True model
models -
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Aleatoric & epistemic uncertainties
Uncertainty theory [Smith and Gal, 2018]

Predictive uncertainty j— Epistemic uncertainty 'I' Aleatoric uncertainty

Observed model Imperfection of model Uncertainty in data itself

performance\ —_

S st /U 2nd
time time

Room for
improvement

|

Proposed  True model
models

e

(error)

d

A

Performanc

If aleatoric uncertainty + 0, no model can achieve perfect performance.

Problem of previous uncertainty prediction methods

Predict aleatoric uncertainty not using data itself but using the model,
using MC-dropout or model ensembles.



Output

Input

Issue 3: Response biases

Preprocessing /

Feature extraction

No preprocessing /
Standardization

Feature extraction

»»

.

Likelihood
maximization /

Loss minimization

®) N1T

Accuracy, F1, AUC
MAE, RMSE

J




Response biases

O)nTT

(Paulhus 1991, Baumgartner & Steenkamp 2001, Wetzel et al. 2016)

Degrade validity of correlation- and variance-based analyses

Task-dependent biases

* Socially desirable responding

« Halo effect
* Leniency/severity

Task-independent biases
* Response style (RS)

(Dolnicar & Grun 2009)

Western Asian
[Zax & Takahashi 1967] /

Extreme RS (ERS) Midpoint RS (MRS)
mé@@@?y 00 &0 O
200000 OO0O0O00O
@ O0O0O0 ONOX NONO)

Tendency to choose specific categories regardless of content

 Random responding
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Rating frequency histogram per respondent
Simple standardization for each person does not make sense.

(Net) acquiescence Narrow range
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Unpublished plots based on the dataset used in Kumano et al. (ACII 2019) Mld pOI nt



Issue 3: Response biases

No prep.ucessing /
Standardization

Output

,' ature extraction]

Too strong assumption @

Input

Yes

00 &0 0
00000 _/K\
00000 i

Too biased ®

Loss minimization

»

.

Likelihood
maximization /

Preprocessing / Training Evaluation
Feature extraction

J

O)nTT

Accuracy, F1, AUC
MAE, RMSE
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Wisdom of crowd for perceived affect

Perceived affect by 3rd persons

MR ARG o
U ‘
Felt affect M

No prep.ucessing / Accuracy, F1, AUC
anceled out [ MAE. RMSE. ]
with each other ©

Standardization

High Well suppressed
reproducibility ©  aleatoric uncertainty ©
Same [Seppi et al. 2008]

Near 100%
upper-bound

' 1st time ' 2nd time

MaRtREtidRe  AMAARRIIAEARG

Performance

\ 4

Inter-rater agreement
~ inv. aleatoric uncertainty 3




Output

Individual’s affective judgment

Perceived affect by 3rd persons

LT @ - R

Happy

?

Too biased ®

No prep.ucessing /
Standardization

Too strong assumption ®

00 &0 0
00000
00000

S\

[
»

Accuracy, F1, AUC
MAE, RMSE, ...

Unknown upper-bound
performance ®

o Room for improvement
=

£ £

Lo How
o large?
P 9

\ 4

Proposed True model
models 14



Interim summary of 3 issues in
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personalized affective computing

ﬁ. Model explainability \ 6 Uncertainties in subjective da@

Neutral

| Happy “

1st

\_ v N

N

>

o
Performance

& unknown upper-bound

Unknown upper-bound
performance ®

Room for improvement

How
large?

Proposed True model
models

(error)

/3. Response biases Iin

subjective judgment
Extreme RS (ERS) Midpoint RS (MRS)
80008 “ 00 &0 0
20000 ® OO0 ®O0
@0 000 OO0O®@0O0
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Our basic assumption to approach

to the issues

Judgments are made following a stochastic process
(categorical/ordinal distribution) including response styles

Throwing a biased dice every time

1st Neutral
time Q I /

Categorical/ordinal

ioﬁ $H¢ distribution of the dice

Response bias

Q Happy (RB) of Q

Midpoint RS (MRS)

e &S
OO0 o
OO0 0OO0
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Deep explanatory item-response model for
prediction of individual’s affective rating

[presented at ACIl 2021]
Yang Zhou, Tsukasa Ishigaki and Shiro Kumano
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Balance predictive performance & explainability

Trade-off [Arrieta et al. 2020]

Our approach

Balancing performance and
explainability through the integration
of deep learning (DL) and item-

explain-
ability

Predictive
performance

response theory (IRT). y : .
Deep learning
L Black box ‘/ + X )
( ltem-response )
theory X v
\_ White box J
Deep learning Item response theory

Latent regression layer H(x;, W', w) Item response layers (1P-RS-GRM)

CNN (VGG-16) w’
Output

—> P(y;; > 11) | Ratitig

—»| Vij

—> P(yij > T(s-1)) —
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Proposed method from DL perspectivé

By constraining the upper layers of DNN with IRT, we obtain the
explainability of how the output is determined at the upper layers

Softmax
CNN (VGG-16)
Q'(—,)l-) Input 24 x 224 x 64 |ayer
8 3  image » : 5 ( Rating
= 95)_ = e aae T . 0 Vi Most classifications deal with nominal
3 a L8 - = E scales for multiple classes.
@ s gy ] £t Output £ g [Tanno etal. CVPR 2019
© X rating
Latent regression layer H(x;, W', W Item response layers (1P-RS-GRM)
CNN (VGG-16) w’
= et Rating scale
» P(y;; = T .
;U ; (yl] : 1) Rating
g —
o) | ‘ || i
%)
CD NSRRI . fe, 4096 P(y sy S—1 )
o ity conneced SBeLl) Weight sharing = 1) 0 Utp ut

19



% O nrT

Proposed method from IRT perspective ™

By performing end-to-end deep-regression of item parameters in an explanatory
item response model, the estimation performance is enhanced.

o Latent regressor Linear regression Item response model
P .
T o0 EXplanaFngpya”ables Rating scale param.
Q = | i s Rating scale
S5 O TR e 00000 > P(yi; > 1) .
2 - Handcrafted wW Rating
o & . ; - Rater . )
3 Q features o _ : : Yij
=a “ :
3 i || | ] _’ P(yij > T(s—1))

E.g facial action units (20 e

P(yij > 15) = 0(6; — Bi — Ks), Ki S S Kgg

[tem characteristic curve

A
o 1 —
= ///
;30_5 e
R ‘
0 B—tk1 B—ky B—ks B—Ky "0
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TOHOKU

Proposed method from IRT perspective

By performing end-to-end deep-regression of item parameters in an explanatory

item response model, the estimation performance is enhanced.

o Latent regressor Linear regression Item response model
P24 .
© 0)) EXplanaFng‘_yanables Rating scale param.
m —* =™ PRNR Rating scale
J - —> P(yi; > 1) _
D > Handcrafted - NN Reting
o & NN Rater
S 9 features = = Yij
et = P -
A A=Y — P(yij > T(s-1))
— E.g facial action units (20 e
[Wilson et al. 2008] ‘
Latent regression layer H(x, W, W) Item response layers (1P-RS-GRM)
CNN (VGG-16) w’
?’jﬂ”f\lonlinear regression . Pl
p e 9 BQa= 1) Rating
O f -
—C's e ’ \ I ! Yij
»
e il "*Weilht e —> P(yij > 1(s-1))
Xi

Instead of a rough linear regression from high-level features determined by
humans as explanatory variables for the item parameter B, it is estimated
from a refined nonlinear regression from the item itself (image).

21
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Experimental results

The performance superiority and inferiority of the three models,
as theoretically expected, were confirmed.

/P rf Item response layers (1P-RS-GRM) \
. 50500 (o) P(yij
e ormance- Standard item response model 26 ﬂ P
1P-RS-GRM oL
o
Latent” regression layer H(x, W', W.) Item response layers (1P-RS-GRM)

S vee-16 w

J Our model i__

CORAL-RS-GRM

Xi

Standard
] explanatory IRT &
\_ Explainability  Au-Rs-GrRm .

Rank-SVM

(@)
—_— - 0644

)

MAE \
— ===
Somers’D

—_— -0.102

© 1.000

E—

nDCG 0.938
——i

@: winning model Valence Arousal On training set 22



Issue 2: unknown upper-bound 3 Onrr

performance

OOOOOO

vvvvvvvvvv

Since all are relative measures,

Upper-bound (how close the current model is to true model) is not clear

??

True model

1.00 ?7?

True model £.00
© I
0575
Accuracy m—

0.542
[ 0.424]
0.375

23



Our approach to the issues

4 Assume two independent
st gqiNeutral)  |5pels, ie. test-retest pairs,
\t|me are available

=
> Categorical/ordinal
nﬁ distribution of the dice
Hard to obtain directly @

Happy ﬁ?
Mldpomt RS (MRS)

é‘%

0003
00O
@O
O®
OOO<



Collision Probability Matching Loss for
Disentangling Epistemic Uncertainty from

Aleatoric Uncertainty

[Presented at AISTATS2023]

THiromi Narimatsu, 2Mayuko Ozawa, 'Shiro Kumano
TNTT Communication Science Laboratories

2Ritsumeikan University
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Summary Of proposec' mEthOd Dices based according to:

True distribution p
ge]oT:1011114Y lﬁi (unobtainable directly)
distribution R Predictive distribution g

True collision probability (CP) Number = category or rating

True of target’s cognition o008
distribution p Y p2 o =
only cPe e [\ 0 Probability of getting

~ Test-retest reliability the same number
True dist. p Cross-CP /6 /6
& predictive 2e e @ Probability of getting
dist. q ~ Mean data likelihood E|q, | the same number
Predictive Predictive CP /6 /6

. . . 2

il g Lcde fﬁ @ Probability of getting
only Directly obtainable the same number

Collision probability = 2nd-order Renyi entropy 26
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Summary of proposed method 3 Toe dsutons

ge]oT:1011114Y

distribution

True collision probability (CP) _ |

True of target’s cognltlon
distribution p > o
only cDE ‘ 5
~ Test-retest reliability
True dist. p Cross-CP B8
& predictive 2icPclc B
dist. q ~ Mean data likelihood E|q, |

Predictive
distribution g
only

\_

Proposed CP
matching constraint

Predictive CP
) L A
Xl B

ny Predictive distribution g

S
Y

True-CP = upper-bound
‘ mw = E&i h@
Cross-CP = Pred-CP

Directly obtainable
/

\_

Model’s performance \

e = SquaredError( ‘ u@

i.e. room for improvement /

27
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Relationship with confidence calibration
True dist. p Eﬁ Predictive dist. g

N
True Proposed method is as an extended method of CC by
distribution p replacing max-class-based to distribution-based
only . J
N ~anvav Aivanth:r maaAasiirahlA
Proposed method Confidence calibration (CC)

/ /6} M()del accuracy (MA) pymax
True dist. p ClEseE L Matching of max predictive
& predictive 2icPec class with observed class
dist. g ~ Mean data Ihelihood E[q,] | |
Sredictive Predictive CP ﬁ’fﬁﬁé Model confidence (MC) gymax

distribution g g2 \I\/Iax predictive probability/
only ; ;
28

Collision probability™= 2nd-order Renyi entropy
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True-CP__ = upper-bound

Results of simulation

Cross-CP = Pred-CP
Model’s performance

p q
~ A € = SquaredError( ,@)
€ — €] le—€é

i.e. room for improvement

S S €
P® -8 ® \

Q
S | 4 RS
o i —<&—  valence & —— arousal
o
I o) 1 o
= o 1° — 1o ®
- S o o S
0] (O] o\ ©
P - 7 \ o
— g 1¢ — i Z % g 8
N S © : §
— S 6 — o © ) 4 o
@ i g o @ e § oo
O 8 9 2 O & §\§\ <& 4 o o
= S 7° o | 7] $ IS
< o > 3 < 6 o &
> ¢ o )
o o o . e g o o & 8
o . & .
S Complete fit Complete fit
d [ [ [ [ [ [ [ [ [ | | |
20 40 60 80 100 120 20 40 60 80 100 120
#images #images

(a) Valence (b) Arousal

Well fitted to theory with enough samples 59



Results on real data

Valence
Proposed (CPM+CE losses) CE loss only
) & True-CP 0.61 v True conf. NA % & True-CP 0.61 True conf. NA
/6@/60ross-CP 0.47 Model accuracy 0.60 /6ﬁaécross-CP 0.61 M accuracy 0.62
@6@6 Pred-CP 0.47 I Model conf. 0.59 X iﬂéiﬁﬁPred-CP 0.94 Model conf. 0.96
e = 0.61 — 0.47 = 0.14 — Error in prob. per class =,/0.14/5 = 0.17 [P |+ |9
True  Pred
Arousal
Proposed (CPM+CE losses) CE loss only
“ True-CP 0.50 True conf. NA True-CP 0.50 True conf. NA
%ﬁéCross-CP 0.39 v Model accuracy 0.50 6@60ross-CP 0.55 M accuracy 0.54
& ® Pred-CP 039 Model conf. 0.50% & ® Pred-CP0.90  Model conf. 0.93

e = 0.50 — 0.39 = 0.11 — Error in prob. per class = \/0.11/5 = 0.15 @j
True Pred 30



Removal of extreme/midpoint response styles
on emotion judgment data

Shiro Kumano and Keishi Nomura

Negative Positive/
Raw rating O OO 0O @ ‘/

< =
ONONON NGO

Response-style
removed




Modeling procedure

Negative Positiv}%
Rawrating OO OO @

Valence & arousal
judgment

7 questionnaires Negative Positiv%

Rawrating OO OO @

Response style (RS)

Response style

as a shared factor

RS-removed OO @ @

Response-style
removed responses

Perceiver ltem
parameters H parameters ‘

Response

style
| @\

Task
independen

Trait

@

Characteristics Slope

®©

Rating

T tasks

= Tendency to choose specific categories regardless of content
[Baumgartner & Steenkamp 2001]
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Our multitask model (mtGPCMRYS)

Extended version of [Tutz et al. 2018]

Respondent ltem A family of ordinal regression
parameters parameters P(y | q))
Response Trait Characteristics Slope log[P(y U_S 1|(D\)] = flj

i T

N\ §ijst = aitgjt  Mist +(mst -85+ 05)7/]
Base terms Response style term
i.e. GPCM
Yij y: Response ®: Parameter set
Rating i : ltem (stimulus) m,: Middle response
T tasks /. Respondent
/ RS parameter y: Task independent factor \

Extreme RS (ERS) Midpoint RS (MRS)

No 1 << 0 ; 0 j >> 0 No Yes
Gg208 s - “— B
=®0 000 Neutral 1 00800

0
: E:
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Rating re-generation process: RS-inclusive

Posterior predictive
RS-inclusive distribution

Respondent ltem
parameters parameters p(o fP(~ CI))lp(CID )da
Regtpcl)ense Trait Characteristics Slope (yly) - yl |y

) @

Negative Positive
inde-gaesnkdent Rawrating OO O O @ %
—
RS-inclusive Recovered 5 o 00 @

rating T tasks (RS-inclusive)

Eiw =0, =B, +(m, —5+0.5)y,
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Rating re-generation process: RS-free

Posterior predictive
RS-free distribution

Perceiver ltem
parameters parameters p(o fP e ] b Iv)d
Trait Characteristics Slope (yly) N (yl 4 p( |y)

Negative Positiv%
Rawrating OO O 0O @

RS-exclusive
rating T tasks

RS-removed OO @ @ ©
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Our estimates vs traditional metric ©) NTT

p=-91,p<.001

(Extreme RS)

0.6-

@ : Respondent
(N=50)

04-

02-

0.0-
0 1

Proportion of extreme choices

«— | — >
Extreme RS (Ei} Neutral Mldpomt RS (MRS)

@«0000 @ : (Expected a O O@®O YS

2 8 8 8 8 EStI mated V posteriori, EAP) 8 8 2 8 8 36



Our estimates vs traditional metric ©) NTT

(Extreme RS)
Extreme Neutra M = 0.42 Midpﬂrzt

T ml 1(49)=5.7, p < .001
> .
O
c
O E - -
>
o
e /ﬁﬁDTFE w ﬂ}ﬁ =
L [ | al
Japanese midpoint RS [zax & Takanhashi 1967]
(7)) .
= O was replicated
c E :
-g O g Respondent
9 g+ : (N=50)
O o -
o 2
)
oo S E} % .,
Extreme RS (Ei} N e utra| Midpoint RS (MRS)
@000O0 - (Expected a 00 &0 0
ZZ 2 8 8 8 8 EStI mated V posteriori, EAP) 8 8 2 8 8 37
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RS increased individual’s test-retest reliability Ty,

06-

ot
W

Test-retest reliability

03-

=
NN
'

Intra-personal reproducibility

- H
Observed .607 Q e “ Q i

2 2nd

]
Valence

cond

l: Valence

| Arousal
d=0.911

| |
+ RS type
M=.471 ﬁ W/ response style
/\ W/o response style

Observed .495

~

M=.386
M=.370

Arousal
Emtional dimension
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RS decreased inter-personal agreement O

[Kumano & Nomura ACII 2019]

Inter-personal agreement

Neutral Happy
2 @9
. $ 1st &mt

ICC(2,1)

A
0.55 + RS

0.5
Observed

0.45 95% CI

+ RS
0.4 ,

0.35 Observed

0.3
W/ RS W/o RS W/ RS W/o RS

Valence Arousal
39



Summary: Approaches to 3 issuesin @ nrr

personalized subjective affect estimation
1. Combined deep learning and item-response theory for
balancing performance and explainability

2. Developed an absolute metric to measure how close
models are to true model under aleatoric uncertainty

3. Proposed a model to remove response styles
(ERS/MRS) from subjective ratings

L B : : . )
1 Throwing a biased dice every time
A g ry
explain- True-CP_ = upper-bound Tst | ja Neutral
ability time Q I
Deep learning s £ £ ﬁﬁ C'ate'gor!callordmal'
Black box v X = _ = distribution of the dice
- i I8 -8 f >
em-response Cross-CP = Pred-CP O \
theory X v g, R ,
White box ) N4 . esponse bias
Model’s performance { Hepo (RB) of @
Deep learning Item response theory p q q y Midpoint RS (MYRS)
Latent regression layer H(x, W', W) Item response layers (1P-RS-GRM) - % o
IIIII CNN (VGG-16) w' ko A ! ) o;t::: 0 6 — SquaredError( m ) 8 8 O g 8
-_' : ] i.e. room for improvement 0O0@0O0
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