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How to combat model explainability, 
uncertainties in subjective judgment and 
response biases in estimating individual’s affect
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What is Affective Computing?
• To build machines understand human emotions,
• To make machines behave emotionally, and
• To develop machines having emotions.

IEEE Trans.
Affective 
Computing

Flagship conference: ACII, Affective 
Computing and Intelligent Interaction

[Picard 97]

IF=13.99

An interdisciplinary field for incorporating emotion 
state recognition, understanding, simulation, and 
stimulation into computer system design.
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Potential applications of affect sensing

All were drawn by DALL-E 3

Subjective experiences matter in many domains
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Felt affect versus perceived affect

All were drawn by DALL-E 3
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Basic steps of supervised learning 
for subjective emotion prediction

Preprocessing / 
Feature extraction Training Evaluation
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Likelihood 
maximization / 

Loss minimization

Accuracy, F1, AUC
MAE, RMSE, …

No preprocessing /
Standardization

Feature extraction

DALL-E 3

Happy
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Issue 1: Ethical, Legal, and Social Issues (ELSI)

Preprocessing / 
Feature extraction Training Evaluation

In
pu

t
O

ut
pu

t

Likelihood 
maximization / 

Loss minimization

Accuracy, F1, AUC
MAE, RMSE, …

No preprocessing /
Standardization

Feature extraction

✓X

Transparent & 
explainable 
models are 

needed

DALL-E 3

Happy
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DALL-E 3

Happy

Accuracy, F1, AUC
MAE, RMSE, …

No preprocessing /
Standardization

Feature extraction

Accuracy, F1, AUC
MAE, RMSE, …

Likelihood 
maximization / 

Loss minimization

Issue 2: Uncertainty in subjective judgment

Preprocessing / 
Feature extraction Training Evaluation
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pu

t

Same person may answer 
differently next time
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rfo
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ce
(e
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Proposed 
models

True model

How 
large?A B C

Room for improvement

Unknown upper-bound 
performance L

1st 
time

2nd 
time

DALL-E 3

Happy

DALL-E 3

Neutral
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Aleatoric & epistemic uncertainties
Uncertainty theory [Smith and Gal, 2018]

Predictive uncertainty Epistemic uncertainty Aleatoric uncertainty

Observed model 
performance

Imperfection of model Uncertainty in data itself

If aleatoric uncertainty ≠ 0, no model can achieve perfect performance.

Problem of previous uncertainty prediction methods
Predict aleatoric uncertainty not using data itself but using the model, 

using MC-dropout or model ensembles.

P
er

fo
rm

an
ce

(e
rr

or
)

Proposed 
models

True model

A B C

Room for 
improvement
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Accuracy, F1, AUC
MAE, RMSE, …

No preprocessing /
Standardization

Feature extraction

Likelihood 
maximization / 

Loss minimization

Issue 3: Response biases

Preprocessing / 
Feature extraction Training Evaluation

In
pu

t
O

ut
pu

t

DALL-E 3

Happy
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Task-independent biases
• Response style (RS)

Tendency to choose specific categories regardless of content
• Random responding
…

Task-dependent biases
• Socially desirable responding
• Halo effect
• Leniency/severity
…

Response biases
(Paulhus 1991, Baumgartner & Steenkamp 2001, Wetzel et al. 2016)

Degrade validity of correlation- and variance-based analyses
(Dolnicar & Grun 2009)

AsianWestern
[Zax & Takahashi 1967]



11

Rating frequency histogram per respondent

Extreme

Midpoint

(Net) acquiescence

(Net) disacquiescence

Wide range

Narrow range

Likert scale

Simple standardization for each person does not make sense.

1 5

Unpublished plots based on the dataset used in Kumano et al. (ACII 2019)
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Accuracy, F1, AUC
MAE, RMSE, …

No preprocessing /
Standardization

Feature extraction

Likelihood 
maximization / 

Loss minimization

Issue 3: Response biases

Preprocessing / 
Feature extraction Training Evaluation

In
pu

t
O

ut
pu

t

Too strong assumption L

Too biased L

DALL-E 3

Happy
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No preprocessing /
Standardization

Accuracy, F1, AUC
MAE, RMSE, …

Feature extraction

Accuracy, F1, AUC
MAE, RMSE, …

Preprocessing / 
Feature extraction Training Evaluation

In
pu

t
O

ut
pu

t

Too biased L

Too strong assumption L

No need
Pe

rfo
rm

an
ce

Proposed 
models

True model
= upper-bound

But how large?

A B C

Room for improvement
Unknown upper-bound L

Felt affect

Canceled out
with each other J

DALL-E 3

Happy

Aggregated judgment
(mean or majority)

Perceived affect by 3rd persons

≈ DALL-E 3

Pe
rfo

rm
an

ce

Inter-rater agreement
≈ inv. aleatoric uncertainty

Well suppressed
aleatoric uncertainty J

[Seppi et al. 2008]

Same model

Near 100%
upper-bound

High 
reproducibility J

1st time 2nd time

DALL-E 3

Happy

DALL-E 3

Happy

Same

Wisdom of crowd for perceived affect
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No preprocessing /
Standardization

O
ut

pu
t

Preprocessing / 
Feature extraction Training Evaluation

Too biased L
Accuracy, F1, AUC

MAE, RMSE, …

Feature extraction

Accuracy, F1, AUC
MAE, RMSE, …

Likelihood 
maximization / 

Loss minimization

In
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t

Too strong assumption L

Pe
rfo
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ce
(e
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r)

Proposed 
models

True model

How 
large?A B C

Room for improvement

Unknown upper-bound 
performance L

Aggregated judgment
(mean or majority)

Perceived affect by 3rd persons

DALL-E 3

Neutral

DALL-E 3

Happy

Individual’s affective judgment 



15

Interim summary of 3 issues in 
personalized affective computing

1. Model explainability 2. Uncertainties in subjective data 
& unknown upper-bound

3. Response biases in
     subjective judgment 

✓X
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1st 
time

Our basic assumption to approach 
to the issues

Judgments are made following a stochastic process 
(categorical/ordinal distribution) including response styles

Throwing a biased dice every time

Categorical/ordinal 
distribution of the dice

Response bias
(RB) ofHappy

Neutral 2nd 
time

Happy
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Deep explanatory item-response model for 
prediction of individual’s affective rating 

[presented at ACII 2021]
Yang Zhou, Tsukasa Ishigaki and Shiro Kumano
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Balance predictive performance & explainability

Predictive 
performance

explain-
ability

Deep learning
Black box

Item-response 
theory
White box

✓ X

X ✓

Proposed

Our approach
Balancing performance and 
explainability through the integration 
of deep learning (DL) and item-
response theory (IRT).

Deep learning Item response theory

Output

Trade-off [Arrieta et al. 2020]
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Proposed

Output

Proposed method from DL perspective

CNN (VGG-16)

fully connected + ReLU

Input
image

𝒙𝒊
fc, 4096

FaceGen Modeller
fc, C softmax, C

𝑦!"

Rating

Standard deep 
learning

Rating

By constraining the upper layers of DNN with IRT, we obtain the 
explainability of how the output is determined at the upper layers

Softmax 
layer

Most classifications deal with nominal 
scales for multiple classes.
E.g. [Tanno et al. CVPR 2019]Output 

rating
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Proposed method from IRT perspective

Standard 
explanatory IR

T 𝛽! −

𝜃"

𝜅# 𝜎

𝜎
…
…

𝑃(𝑦!" ≻ 	 𝑟#) 

𝑃(𝑦!" ≻ 𝑟 $%# )

…
…

Explanatory variables

Item response model

𝐖
𝑦!"

Rating scale

Rater Rating

E.g facial action units

Handcrafted 
features

Linear regression

Item param.

Rater 
param.

Rating scale param.

Latent regressor

By performing end-to-end deep-regression of item parameters in an explanatory 
item response model, the estimation performance is enhanced. 

P
robability

1

0

0.5

𝛽 − 𝜅# 𝛽 − 𝜅& 𝛽 − 𝜅' 𝛽 − 𝜅( 𝜃

Item characteristic curve

𝑃 𝑦!" ≻ 	 𝑟# = 𝜎 𝜃" − 𝛽! − 𝜅# , 𝜅$ ≤ ⋯ ≤ 𝜅%&$
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Proposed method from IRT perspective

Standard 
explanatory IR

T 𝛽! −

𝜃"

𝜅# 𝜎

𝜎
…
…

𝑃(𝑦!" ≻ 	 𝑟#) 

𝑃(𝑦!" ≻ 𝑟 $%# )

…
…

Explanatory variables

Item response model

𝐖
𝑦!"

Rating scale

Rater Rating

E.g facial action units

Handcrafted 
features

Linear regression

Item param.

Rater 
param.

Rating scale param.

O
urs

Instead of a rough linear regression from high-level features determined by 
humans as explanatory variables for the item parameter β, it is estimated 
from a refined nonlinear regression from the item itself (image).

Nonlinear regression

[Wilson et al. 2008]

Latent regressor

By performing end-to-end deep-regression of item parameters in an explanatory 
item response model, the estimation performance is enhanced. 
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Experimental results
The performance superiority and inferiority of the three models, 
as theoretically expected, were confirmed.

Standard
explanatory IRT

Standard item response model
1P-RS-GRM

Our model
CORAL-RS-GRM

AU-RS-GRM

●: winning model

Rank-SVM

Performance

Explainability

On training set
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Issue 2: unknown upper-bound 
performance

Standard
explanatory IRT

Standard item response model
1P-RS-GRM

Our model
CORAL-RS-GRM

AU-RS-GRM

●: winning model

Rank-SVM

Performance

Explainability

On training set

Since all are relative measures,
Upper-bound (how close the current model is to true model) is not clear

1.00True model ?? 1.00True model ??
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1st 
time

Our approach to the issues
Assume choices are made following a stochastic process 
(categorical/ordinal distribution) including response styles

Throwing a biased dice every time

Categorical/ordinal 
distribution of the dice

Response bias
(RB) ofHappy

Neutral 2nd 
time

Happy
Assume two independent 

labels, i.e. test-retest pairs, 
are available

Hard to obtain directly ☹
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Collision Probability Matching Loss for 
Disentangling Epistemic Uncertainty from 

Aleatoric Uncertainty

1Hiromi Narimatsu, 2Mayuko Ozawa, 1Shiro Kumano

 1NTT Communication Science Laboratories
2Ritsumeikan University

[Presented at AISTATS2023]
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Summary of proposed method
Probability 
distribution Measure

True 
distribution 𝑝
only

True collision probability (CP) 
of target’s cognition

∑" 𝑝"#

≈ Test-retest reliability

True dist. 𝑝
& predictive 
dist. 𝑞

Cross-CP
∑" 𝑝"𝑞"

≈ Mean data likelihood 𝐸 𝑞$

Predictive 
distribution 𝑞
only

Predictive CP
∑" 𝑞"#

Directly obtainable

Probability of getting 
the same number

Probability of getting 
the same number

Probability of getting 
the same number

Collision probability = 2nd-order Renyi entropy

True distribution 𝑝 
Dices based according to:

Predictive distribution 𝑞

Number = category or rating

(unobtainable directly)
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Summary of proposed method
Probability 
distribution Measure

True 
distribution 𝑝
only

True collision probability (CP) 
of target’s cognition

∑" 𝑝"#

≈ Test-retest reliability

True dist. 𝑝
& predictive 
dist. 𝑞

Cross-CP
∑" 𝑝"𝑞"

≈ Mean data likelihood 𝐸 𝑞$

Predictive 
distribution 𝑞
only

Predictive CP
∑" 𝑞"#

Directly obtainable

True distribution 𝑝

Predictive distribution 𝑞

=Proposed CP 
matching constraint

≥

= upper-boundTrue-CP

0

1

i.e. room for improvement

Cross-CP = Pred-CP

𝜖

𝜖 = SquaredError(       ,       )

=

Model’s performance
𝑞𝑝
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Relationship with confidence calibration

Prob. dist. Distribution-based 
measure

True 
distribution 𝑝
only

True collision probability (CP) 
of target’s cognition

∑" 𝑝"#

Approx. directly measurable

True dist. 𝑝
& predictive 
dist. 𝑞

Cross-CP
∑" 𝑝"𝑞"

≈ Mean data likelihood 𝐸 𝑞$

Predictive 
distribution 𝑞
only

Predictive CP
∑" 𝑞"#

Directly obtainable
Collision probability = 2nd-order Renyi entropy

=

Max-class-based measure

True (human) confidence
Hard to obtain due to 

human’s overconfidence L
[Jogan & Stocker 2014, Li & Ma 2020]

Model accuracy (MA) 𝑝'$()*
Matching of max predictive 
class with observed class

Model confidence (MC) 𝑞 '$()*
Max predictive probability

Confidence calibration (CC)Proposed method

Proposed method is as an extended method of CC by 
replacing max-class-based to distribution-based

True dist. 𝑝 Predictive dist. 𝑞

=
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Results of simulation

Complete fit

Fitness to theory

𝜖 − ̂𝜖
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Well fitted to theory with enough samples

#images #images

Complete fit

𝜖 − ̂𝜖

Fitness to theory
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Results on real data

Dist.-based Max-class-based
True-CP 0.61 True conf. NA

Cross-CP 0.47 Model accuracy 0.60
Pred-CP 0.47 Model conf. 0.59

Dist.-based Max-class-based

True-CP 0.61 True conf. NA
Cross-CP 0.61 M accuracy 0.62
Pred-CP 0.94 Model conf. 0.96

Dist.-based Max-class-based
True-CP 0.50 True conf. NA

Cross-CP 0.39 Model accuracy 0.50
Pred-CP 0.39 Model conf. 0.50

Dist.-based Max-class-based

True-CP 0.50 True conf. NA
Cross-CP 0.55 M accuracy 0.54
Pred-CP 0.90 Model conf. 0.93

Valence
Proposed (CPM+CE losses) CE loss only

𝜖 = 0.61 − 0.47 = 0.14 Error in prob. per class = 0.14/5 = 0.17 
True Pred

𝑝 𝑞

≥
= ≈

Arousal
Proposed (CPM+CE losses) CE loss only

𝜖 = 0.50 − 0.39 = 0.11 Error in prob. per class = 0.11/5 = 0.15 
True Pred

𝑝 𝑞

≥
= ≈
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Removal of extreme/midpoint response styles
on emotion judgment data

[presented at ACII 2019]
Shiro Kumano and Keishi Nomura
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Modeling procedure

Responses
on main task

Responses
on sub tasks

Response style
as a shared factor

Response-style 
removed responses

𝛾

-

Response style (RS)
= Tendency to choose specific categories regardless of content
[Baumgartner & Steenkamp 2001]

7 questionnaires

Valence & arousal 
judgment

FaceG
en
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𝜷+,

T tasks

𝜃-,

Respondent 
parameters

Trait

Rating

𝑦+-

𝛾-

Response 
style

𝛼+,

Item 
parameters

Our multitask model (mtGPCMRS)
Extended version of [Tutz et al. 2018]

RS parameter 𝛾: Task independent factor

Characteristics Slope
( )

( )
( )

|
log

1|

0.5

ij
ijs

ij

ijs i j is s j

P y s

P y s

m s

x

x a q b g

æ ö= F
ç ÷ =
ç ÷= - Fè ø
= - + - +

Response style term

y: Response
i : Item (stimulus)
ｊ : Respondent

A family of ordinal regression

Base terms
i.e. GPCM

( )0.5ijst it jt ist st jm sx a q b g= - + - +

S=1
S=2

S=3

P(
y=

s)

Neutral
1

0
𝜉

1

0
𝜉

𝛾- ≪ 0

S=1

S=2

S=3
1

0
𝜉

𝛾- ≫ 0

S=1

S=2

S=3

𝛾- ≈ 0

Φ: Parameter set
ms: Middle response
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Rating re-generation process: RS-inclusive

𝜷!"

T tasks

𝜃#"

Respondent 
parameters

Trait

RS-inclusive 
rating

𝑦!#

𝛾#

Response 
style

𝛼!"

Item 
parameters

Task 
independent

( )0.5ijst it jt ist st jm sx a q b g= - + - +

𝑃 (𝑦|𝑦 = +𝑃 (𝑦|Φ 𝑝 Φ|𝑦 𝑑Φ

Posterior predictive
RS-inclusive distribution

Characteristics Slope

Negative Positive
Raw rating

Recovered
(RS-inclusive)
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Negative Positive
Raw rating

𝛾#

Response 
style

( )0.5ijst it jt ist st jm sx a q b g= - + - +

Rating re-generation process: RS-free

𝑃 (𝑦|𝑦 = +𝑃 (𝑦|Φ!" 𝑝 Φ|𝑦 𝑑Φ

Posterior predictive
RS-free distribution

𝜷!"

T tasks

𝜃#"

Trait Characteristics

𝑦!#

𝛼!"

Item 
parameters

Slope

Perceiver 
parameters

RS-exclusive 
rating

RS-removed
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Our estimates vs traditional metric 
(Extreme RS)
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ρ = -.91, p < .001
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        (N=50)
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(Expected a 
posteriori, EAP)
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Our estimates vs traditional metric 
(Extreme RS)
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ity

M = 0.42
t(49)=5.7, p < .001

Fr
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ue
nc

y

Japanese midpoint RS [Zax & Takahashi 1967]

was replicated

Neutral MidpointExtreme

Estimated γ
Neutral

(Expected a 
posteriori, EAP)
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RS increased individual’s test-retest reliability

M=.498

M=.471

d=1.38
***

d=0.911
***

M=.386
M=.370

Valence
Arousal

W/ response style

W/o response style

Valence Arousal

Observed .607

Observed .495

+ RS

+ RS

[in prep.]

Intra-personal reproducibility
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RS decreased inter-personal agreement

0.3

0.35

0.4

0.45

0.5

0.55

Valence Valence Arousal Arousal

Valence Arousal

ICC(2,1)

95% CI
Observed

+ RS

+ RS

W/ RS W/o RS W/ RS W/o RS

Observed

[Kumano & Nomura ACII 2019]

Inter-personal agreement
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Summary: Approaches to 3 issues in 
personalized subjective affect estimation
1. Combined deep learning and item-response theory for 

balancing performance and explainability
2. Developed an absolute metric to measure how close 

models are to true model under aleatoric uncertainty
3. Proposed a model to remove response styles 

(ERS/MRS) from subjective ratings


