APRIS 2023

Asia Pacific Conference on Robot IoT System Development and Platform (APRIS) 2nd November 2023

Personalized affective computing

How to combat model explainability, uncertainties in subjective judgment and response biases in estimating individual's affect

Shiro Kumano

NTT Communication Science Laboratories

What is Affective Computing?

- To build machines understand human emotions,
- To make machines behave emotionally, and
- To develop machines having emotions. ullet

An interdisciplinary field for incorporating emotion state recognition, understanding, simulation, and stimulation into computer system design.

IEEE Trans. Affective Computing

F=13.99

Flagship conference: ACII, Affective Computing and Intelligent Interaction

Potential applications of affect sensing

Subjective experiences matter in many domains

All were drawn by DALL-E 3

NTT

Felt affect versus perceived affect

Basic steps of supervised learning for subjective emotion prediction

О NTT Issue 1: Ethical, Legal, and Social Issues (ELSI)

O NTT Issue 2: Uncertainty in subjective judgment

Aleatoric & epistemic uncertainties

Uncertainty theory [Smith and Gal, 2018]

If aleatoric uncertainty $\neq 0$, no model can achieve perfect performance.

Problem of previous uncertainty prediction methods

Predict aleatoric uncertainty not using data itself but using the model, using MC-dropout or model ensembles.

Issue 3: Response biases

Response biases

. . .

(Paulhus 1991, Baumgartner & Steenkamp 2001, Wetzel et al. 2016)

Degrade validity of correlation- and variance-based analyses

(Dolnicar & Grun 2009)

Rating frequency histogram per respondent

Simple standardization for each person does not make sense.

Issue 3: Response biases

Wisdom of crowd for perceived affect

Perceived affect by 3rd persons

Individual's affective judgment

Perceived affect by 3rd persons

Interim summary of 3 issues in personalized affective computing

Our basic assumption to approach

to the issues

Judgments are made following a stochastic process (categorical/ordinal distribution) including response styles

Deep explanatory item-response model for prediction of individual's affective rating

[presented at ACII 2021] Yang Zhou, Tsukasa Ishigaki and Shiro Kumano

Balance predictive performance & explainability

Our approach

Balancing performance and explainability through the integration of deep learning (DL) and itemresponse theory (IRT).

Deep learning

Latent regression layer $H(x_i, W', W)$

Item response theory

Item response layers (1P-RS-GRM)

Proposed method from DL perspective

By constraining the upper layers of DNN with IRT, we obtain the explainability of how the output is determined at the upper layers

Proposed method from IRT perspective

By performing end-to-end deep-regression of item parameters in an explanatory item response model, the estimation performance is enhanced.

Proposed method from IRT perspective

By performing end-to-end deep-regression of item parameters in an explanatory item response model, the estimation performance is enhanced.

Instead of a rough linear regression from high-level features determined by humans as explanatory variables for the item parameter β , it is estimated from a refined nonlinear regression from the item itself (image).

Experimental results

The performance superiority and inferiority of the three models, as theoretically expected, were confirmed.

: winning model

Valence

Arousal On training set 22

Issue 2: unknown upper-bound performance

Our approach to the issues

Assume choices are made following a stochastic process (categorical/ordinal distribution) including response styles

Collision Probability Matching Loss for Disentangling Epistemic Uncertainty from Aleatoric Uncertainty

[Presented at AISTATS2023]

¹Hiromi Narimatsu, ²Mayuko Ozawa, ¹Shiro Kumano ¹NTT Communication Science Laboratories ²Ritsumeikan University

Summary of proposed method

Dices based according to:

Probability distribution	Measure	True distribution p (unobtainable directly)Predictive distribution q
True distribution <i>p</i> only	True collision probability (CP) of target's cognition $\sum_c p_c^2$ \approx Test-retest reliability	Number = category or rating
True dist. <i>p</i> & predictive dist. <i>q</i>	Cross-CP $\sum_{c} p_{c} q_{c}$ \approx Mean data likelihood $E[q_{y}]$	Probability of getting the same number
Predictive distribution <i>q</i> only	Predictive CP $\sum_{c} q_{c}^{2}$ Directly obtainable	Probability of getting the same number

Relationship with confidence calibration

True dist. p Predictive dist. q

Prob <u>. dist.</u>	Distribution-based	Max-class-based measure			
True distribution p only	Proposed method is as an replacing max-class-ba	Proposed method is as an extended method of CC by replacing max-class-based to distribution-based			
	Proposed method	Confidence calibration (CC)			
True dist. <i>p</i> & predictive dist. <i>q</i>	Cross-CP \overleftarrow{b} \overleftarrow{b} $\sum_{c} p_{c} q_{c}$ \approx Mean data likelihood $E[q_{y}]$	Model accuracy (MA) $p_{\hat{y}max}$ Matching of max predictive class with observed class			
Predictive distribution <i>q</i> only	Predictive CP $rac{1}{2}$	Model confidence (MC) $q_{\hat{y}max}$ Max predictive probability			

NTT

Well fitted to theory with enough samples

Results on real data

Valence

Proposed (CPM+CE losses)

CE loss only

CE loss only

Distbased	Max-class-based	Distbased	Max-class-based		
🔊 🔊 True-CP 0.61	True conf. NA	() True-CP 0.61	True conf. NA		
6 Cross-CP 0.47	Model accuracy 0.60	(1) Cross-CP 0.61	M accuracy 0.62		
🏟 🐞 Pred-CP 0.47 📕	Model conf. 0.59 ⁽⁽	1 1 1 1 1 1 1 1 1 1	Model conf. 0.96		
$\epsilon = 0.61 - 0.47 = 0.14 \longrightarrow$ Error in prob. per class = $\sqrt{0.14/5} = 0.17$ $\stackrel{p}{\longrightarrow} \stackrel{q}{\longrightarrow}$					
		-	True Pred		

Arousal

Proposed (CPM+CE losses)

	/		J
Distbased	Max-class-based	Distbased	Max-class-based
🐨 🐨 True-CP 0.50	True conf. NA	🐨 True-CP 0.50	True conf. NA
🐨 🗑 Cross-CP 0.39	Model accuracy 0.50	Cross-CP 0.55	M accuracy 0.54
🚳 🚳 Pred-CP 0.39	Model conf. 0.50 ⁽	🚳 🚳 Pred-CP 0.90	Model conf. 0.93
$\epsilon = 0.50 - 0.39 = 0.1$	$1 \longrightarrow \text{Error in prob. pe}$	er class = $\sqrt{0.11/5}$ = ($0.15 \stackrel{p}{\textcircled{\tiny 0}} \stackrel{q}{\textcircled{\tiny 0}} \stackrel{q}{\textcircled{\tiny 0}}$
			True Pred 30

Removal of extreme/midpoint response styles on emotion judgment data

[presented at ACII 2019] Cambridge Shiro Kumano and Keishi Nomura

 \square

Modeling procedure

[Baumgartner & Steenkamp 2001]

Our multitask model (mtGPCMRS)

Extended version of [Tutz et al. 2018]

© NTT Rating re-generation process: RS-inclusive

 $\xi_{ijst} = \alpha_{it}\theta_{jt} - \beta_{ist} + (m_{st} - s + 0.5)\gamma_j$

Posterior predictive RS-inclusive distribution $P(\tilde{y}|y) = \int P(\tilde{y}|\Phi) p(\Phi|y) d\Phi$ Negative Positive// Raw rating OOOO Recovered (RS-inclusive)

Rating re-generation process: RS-free

$$\xi_{ijst} = \alpha_{it}\theta_{jt} - \beta_{ist} + (m_{st} - s + 0.5)\gamma_j$$

Posterior predictive RS-free distribution

$$P(\tilde{y}|y) = \int P(\tilde{y}|\Phi_{-\gamma}) p(\Phi|y) d\Phi$$

Our estimates vs traditional metric (Extreme RS)

NTT

Our estimates vs traditional metric

(Extreme RS)

NTT

RS increased individual's test-retest reliability [in prep.]

Intra-personal reproducibility Нарру Neutral Observed .607 T 1 0.6 -1st 2nd d=1.38 *** +RS cond Observed .495 Test-retest reliability 0.5 -Valence Arousal d=0.911 *** +RS M=.498 type W/ response style M=.471 0.4 -W/o response style M=.386 M=.370 0.3 -Valence Arousal Emtional dimension

Summary: Approaches to 3 issues in ONTT personalized subjective affect estimation

- 1. Combined deep learning and item-response theory for balancing performance and explainability
- 2. Developed an absolute metric to measure how close models are to true model under aleatoric uncertainty
- 3. Proposed a model to remove response styles (ERS/MRS) from subjective ratings

